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Abstract

In this paper, we propose a multi-view learning method using Magnetic Resonance Imaging 

(MRI) data for Alzheimer’s Disease (AD) diagnosis. Specifically, we extract both Region-Of-

Interest (ROI) features and Histograms of Oriented Gradient (HOG) features from each MRI 

image, and then propose mapping HOG features onto the space of ROI features to make them 

comparable and to impose high intra-class similarity with low inter-class similarity. Finally, both 

mapped HOG features and original ROI features are input to the support vector machine for AD 

diagnosis. The purpose of mapping HOG features onto the space of ROI features is to provide 

complementary information so that features from different views can not only be comparable (i.e., 

homogeneous) but also be interpretable. For example, ROI features are robust to noise, but lack of 

reflecting small or subtle changes, while HOG features are diverse but less robust to noise. The 

proposed multi-view learning method is designed to learn the transformation between two spaces 

and to separate the classes under the supervision of class labels. The experimental results on the 

MRI images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show that the 

proposed multi-view method helps enhance disease status identification performance, 

outperforming both baseline methods and state-of-the-art methods.

1 Introduction

Alzheimer’s Disease (AD) is the most popular form of dementia among the elderly 

population. It is estimated that there are around 90 million AD patients in the world, with the 

number of AD patients expected to reach 300 million by 2050 [8,12]. In this regard, it is 

very interesting and important to find an accurate biomarker for the diagnosis of AD and its 

prodromal stage, i.e., Mild Cognitive Impairment (MCI). For the past few decades, 

neuroimaging has been widely used to investigate AD-related pathologies in the spectrum 

between cognitive normal and AD [7,17], where various machine learning techniques have 

been designed for the analysis of complex patterns in neuroimaging data, as well as 

identification of a subject’s clinical status. For example, Cuingnet et al. embedded a graph-
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based regularization operator into Support Vector Machine (SVM) for the identification of 

AD [2], while Wang et al. designed a sparse Bayesian multitask learning model to 

adaptively investigate the dependence of AD subjects, for improving the AD diagnosis 

performance [10].

Since multi-modality data (including Magnetic Resonance Imaging (MRI), Positron 

Emission Tomography (PET), and CerebroSpinal Fluid (CSF) biomarkers) are often 

acquired in applications and have been shown to provide complementary information for 

AD diagnosis [4,5,11,13,16], a great number of research use multi-modality data for AD 

diagnosis and obtain significant performance improvements, compared to the methods that 

use a single modality data [9,15,19]. For example, Zhang et al. designed an approach that 

conducts AD diagnosis by directly concatenating features of multiple modalities of data 

including MRI data, PET data, and CSF data, as their method outperformed other methods 

with individual modality data, such as MRI data or PET data [13,18]. However, to the best 

of our knowledge, very few previous works have focused on the identification of AD with 

multi-view or visual features of neuroimaging data.

In this paper, we propose a new multi-view learning method using multiple representations 

of MRI images for AD diagnosis, via the following three stages: 1) Image processing. We 

extract both Region-Of-Interest (ROI) features and 3-dimensional Histograms of Oriented 

Gradient (HOG) [6] features from given MRI images. 2) Multi-view learning. A new multi-

view learning method is designed to map HOG features onto the space of ROI features, by 

ensuring high similarity for samples with the same label, while low similarity for samples 

with different labels. This makes classes well separated. 3) AD classification. Both the 

mapped HOG features and the original ROI features are fed into a SVM classifier to identify 

AD.

Compared to conventional methods (e.g., the multi-modality method [13] and the single-

view method [9]) for AD diagnosis, this work has the following contributions.

• We extract both HOG features and ROI features from only MRI images to form 

multi-view features, rather than conventional multi-modality methods using both 

MRI images and PET images [13]. That is, multi-modality methods need to pay 

additional for PET images, whereas no additional payments are required for our 

method. In practice, the ANDI dataset provides more MRI images (e.g., more than 

800) than PET images (e.g., only about 400), and has been indicated that less 

training data can easily result in under-fitting [9].

• Few studies focus on AD diagnosis via visual features, such as HOG, even though 

HOG features and ROI features can provide complementary information. It has 

been shown that ROI features, e.g., the average of gray matter volume within a 

brain region, are robust to the noise but are less diverse for AD diagnosis [13]. In 

contrast, HOG features can output multiple bi-dimensional histograms for a brain 

region to reflect the change of blocks within a brain region, so HOG features are 

good at reflecting small or subtle changes within brain, though vulnerable to noises 

[6].
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• Compared to learning common space among different views like Canonical 

Correlation Analysis (CCA) [14], the proposed method learns the mappings from 

the HOG feature space to the ROI feature space, with the guidance of learning high 

intra-class similarity and low inter-class similarity.

2 Approach

2.1 Notations

We denote matrices as boldface uppercase letters, vectors as boldface lower-case letters, and 

scalars as normal italic letters, respectively. For a matrix X = [xij ], its i-th row and j-th 

column are denoted as xi and xj, respectively. The Frobenius norm and the transpose 

operator of a matrix X are denoted as  and 

XT, respectively.

2.2 Image Processing

The ROI feature can be regarded as the global feature, as it is obtained by averaging gray 

matter tissue volume within a brain region. The ROI feature has been indicated to be robust 

to noise but very coarse in sense, such as the lack of reflecting small or subtle changes 

involved in brain diseases [9]. However, disease-related structural/functional changes may 

occur in multiple brain regions [13]. Therefore, the simple ROI representation may not 

effectively capture diseased-related pathologies. In contrast, the HOG feature decomposes a 

3D image into a grid of small squared 3D cells, where a bi-dimensional histogram of 

gradient along spatial and orientation bins is computed and then returns a descriptor for each 

cell [6]. The HOG feature considers the diversity of each cell and can be regarded as the 

local feature. In this work, we simultaneously extract ROI features (i.e., global features) and 

HOG features (i.e., local features) from an MRI image to form a multi-view representation 

for AD diagnosis. To do this, we use 830 MRI images (including 198 ADs, 403 MCIs and 

229 Normal Controls (NC)) from ADNI database1. Additionally, we select 124 progress 

MCIs (pMCI) and 118 stable MCIs (sMCI) from 403 MCIs to conduct the binary 

classification pMCI vs. sMCI2.

More specifically, we first preprocessed the MRI images by performing spatial distortion, 

skull-stripping, and cerebellum removal, sequentially, and then segmented the MRI images 

into gray matter, white matter, and cerebrospinal fluid. Furthermore, the MRI images were 

parcellated into 93 ROIs based on a Jacob template, by non-rigid brain registration. We 

finally computed the gray matter tissue volumes of the ROIs as the ROI features.

Given the MRI images separated by 93 ROIs, we extracted the HOG features for each ROI. 

Specifically, we first down-sampled the original MRI images, i.e., from 256 × 256 × 256 to 

64 × 64 × 64, followed by partitioning the whole brain into 93 ROIs, which is the same as 

partitioning the original brain image to extract the ROI features. We dilated each ROI with 3 

voxels to achieve a soft boundary among ROIs. Following the method in [6], we set the 

1Please refer to ‘http://adni.loni.usc.edu/’ for up-to-date information.
2In ADNI, these numbers, i.e., 124 and 118, of subjects were, respectively, marked as pMCI and sMCI among 403 MCI subjects.
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number of orientation bins to 9, with each bin with 8 orientations to describe a descriptor by 

a 72-dimensional feature vector. We also set the size (in voxels) of the spatial bins and the 

size of the blocks, respectively, as 5 and 2, to extract 1728 descriptors from each ROI. Note 

that descriptor information was divided into overlapping blocks, each of which contained 

2×2×2 3-dimensional cells. We further clustered descriptors of each ROI of all MRI images 

to form a 50-dimensional bag-of-words for each ROI.

Finally, we used a 93 dimensional ROI feature vector and a 4650 (= 93 × 50) dimensional 

HOG feature vector to obtain a multi-view representation of an MRI image.

2.3 Multi-view Learning

A conventional solution of multi-view learning is to search for a common space among 

different views. For example, Canonical Correlation Analysis (CCA) was designed to search 

a common space among views in which the diversity among all views was minimized [14]. 

However, recent studies indicate that such a common space obtained by a symmetric 

transformation (i.e., the same rotation and scaling to all views) cannot separate classes 

particularly well [3,14]. To address this, we design a new multi-view learning method to 

transform HOG features into the ROI feature space by ensuring that the HOG-ROI feature 

pairs of the same label have high similarity (i.e., high intra-similarity), while those of 

different labels have low similarity (i.e., low inter-similarity).

Let X = {x1, …, xi, …, xn} and Y = {y1, …, yi, …, yn} denote, respectively, HOG features 

and ROI features of n samples, where xi ∈ ℝdx, yi ∈ ℝdy, and dx and dy are the 

dimensionalities of the HOG and ROI features, respectively. We, then, learn a 

transformation matrix W ∈ ℝdx×dy from the HOG feature space to the ROI feature space (or 

equivalently a transformation matrix WT from the ROI feature space to the HOG feature 

space). We first define an inner product similarity function between any sample pair, i.e., xi 

∈ X and yj ∈ Y, as follows

(1)

In finding a transformation matrix W, we also expect Eq. (1) to have high intra-similarity for 

samples of the same class, but low inter-similarity for samples of different classes under the 

supervision of the class labels. In this regard, we formulate the following cost function for a 

given sample pair (xi, yj), i, j = 1,…, n:

(2)

where l(i) (or l(j)) is the label of the HOG features of the i-th sample (or the label of the ROI 

features of the j-th sample), μ and ν are upper and lower bound parameters to guarantee the 

constraint, i.e., the largest value of c(xi, yj), i, j = 1, …, n, for the sample pair (xi, yj) with the 

same class label and the smallest value c(xi, yj) for the sample pair (xi, yj) with different 

class labels. Finally, we define a loss function over all sample pairs as follows
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(3)

To avoid over-fitting, we add a Frobenius norm into Eq. (3) to get the final objective 

function as follows:

(4)

where λ > 0 is a tuning parameter. Due to the convexity of both the cost function and the 

regularization term in Eq. (4), the optimization of Eq. (4) has a global optimum. We employ 

an alternating projection method based on Bregman’s algorithm [1] to optimize Eq. (4). 

Specifically, the Bregman’s method updates the transformation matrix W with respect to a 

single constraint in Eq. (2) of a sample pair for each time, which can be easily scaled to 

large-scale problems and fast convergence in practice.

2.4 AD Classification

After obtaining the transformation matrix W, we concatenate the transformed HOG features 

 with the original ROI features yi to form a new representation 

. Naturally, we can also directly concatenate the original HOG 

features with the original ROI features to form another new representation 

. We can unify these two kinds of representation as 

, where

(5)

In this work, we call the former case (i.e., ) as the Single-direction Mapping 

Multi-view Learning (SMML for short) method and the latter case (i.e., f (xi) = xi) as the 

Directly Concatenating Multi-view Learning (DCML for short) method. Note that SMML 

transfers HOG features into the space of the ROI features, via a linear transformation matrix 

(i.e., W), while DCML does that via an identity matrix. We, then, use a linear SVM as a 

classifier since it has been shown that SVM does not encounter the issue of curse of the 

dimensionality.

3 Experimental Results and Discussion

We conducted various classification tasks on the ADNI dataset (‘www.adni-info.org’) to 

justify the effectiveness of the proposed method.

3.1 Experimental Setting

In our experiments, we considered three binary classification tasks, i.e., AD vs. NC, MCI vs. 

NC, and pMCI vs. sMCI, to compare our DCML and SMML with the baseline methods (i.e., 
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the SVM classification via the HOG features (HOG for short) and the SVM classification 

via the ROI features (ROI for short), respectively) and the state-of-the-art methods (i.e., 

CCA [14] and Multiple Instance Learning method on MRI images (MIL for short) [9]). 

Among the competing methods, single-view methods include HOG, ROI, and MIL, 

respectively, while multi-view methods include CCA and the proposed DCML and SSML.

For each binary classification task, we followed the steps of (1) extracting HOG and ROI 

features; (2) finding a transformation matrix W; (3) conducting SVM learning; and (4) 

evaluating the performance with classification accuracy.

We used a 10-fold cross-validation method in our experiments. In each fold, we conducted 

5-fold inner cross-validation for model parameter selection by a line search method on the 

parameters with the predefined range, such as λ ∈ {10−5, …, 105} in the LIBSVM toolbox. 

Regarding the upper and lower bounds in Eq. (2), we set them as μ = 1 and ν = −1. The 

parameters that resulted in the best performance in the inner cross-validation were finally 

used in testing. We repeated the process 10 times to avoid any possible bias occurring in 

data partitioning for cross-validation. The final performance was reported by averaging the 

repeated cross-validation results.

3.2 Performance and Discussion

Table 1 shows the performance of all other competing methods. The proposed SMML 

achieved the best performances for all three binary classification tasks, followed by CCA, 

DCML, MIL, ROI and HOG, respectively. For example, SMML achieved improvements of 

9.86%, 6.40%, and 6.08%, respectively, on AD vs. NC, MCI vs. NC, and pMCI vs. sMCI, 

compared to the worst method of all competing methods, i.e., HOG method, and improved 

by 1.08%, 2.41%, and 2.61%, respectively, on AD vs. NC, MCI vs. NC, and pMCI vs. 

sMCI, compared to the CCA that achieved the best performance among competing methods.

MIL outperformed all other single-view methods, such as HOG and ROI. MIL is a patch-

based method and extracts ROI features within each patch, as it is diverse and also robust, 

compared to either ROI or HOG. However, our proposed methods outperformed MIL. For 

example, compared to MIL, our SMML improved by 1.61%, 5.18%, and 8.29%, while our 

DCML increased by 0.29%, 2.34%, and 4.87%, on AD vs. NC, MCI vs. NC, and pMCI vs. 

sMCI, respectively. Additionally, HOG outperformed ROI for two out of three classification 

tasks, such as MCI vs. NC and pMCI vs. sMCI. This indicated that visual feature (i.e., 

HOG) is useful for AD diagnosis. Besides, multi-view methods (such as CCA, DCML, and 

SMML) were better than any single-view method (such as HOG, ROI, and MIL). This 

showed that HOG features and ROI features provide complementary information. However, 

the proposed SMML still outperformed CCA since our method simultaneously achieved 

high intra-class similarity and low inter-class similarity during the estimation of 

transformation, compared to CCA results.

4 Conclusion

In this paper, we proposed a new multi-view learning method to identify AD using MRI 

images. The experimental results on the ADNI dataset showed that the proposed method 
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outperformed the state-of-the-art methods for AD diagnosis, as our multi-view 

representation provides complementary information by extracting both global features (i.e., 

ROI features) and local features (i.e., HOG features) from MRI images and further imposing 

high intra-class similarity and low inter-class similarity during feature mapping.
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Table 1

Comparison of the classification accuracy (mean±standard deviation) of all methods at different classification 

tasks.

Method AD vs. NC MCI vs. NC pMCI vs. sMCI

HOG 0.8145 ± 0.0957 0.7167 ± 0.2088 0.6946 ± 2.5119

ROI 0.8969 ± 0.0951 0.7136 ± 0.1899 0.6638 ± 2.2902

MIL 0.8970 ± 0.0871 0.7289 ± 0.1249 0.6725 ± 1.4298

CCA 0.9023 ± 0.0838 0.7566 ± 0.1152 0.7293 ± 1.3333

DCML 0.8999 ± 0.0987 0.7523 ± 0.0991 0.7212 ± 1.2468

SMML 0.9131 ± 0.0629 0.7807 ± 0.0961 0.7554 ± 1.1972
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